Instructional Science

How to assist the students while learning from text? Effects of inserting adjunct questions on text processing

1 day 9 hours ago
Abstract

This study analyzes the effect of text-inserted questions and post-text-reading questions, i.e., questions timing, on students’ processing and learning when studying challenging texts. Seventy-six freshmen read two science texts and answered ten adjunct questions with the text available, being tested on learning 5 days afterwards. Questions were presented either after reading the whole text or inserted in the text after reading the relevant information. Online processing data were recorded while reading and searching the texts, and measures of processing strategies (i.e., paraphrases, elaborations) while answering the questions were collected. Compared to students in the post-reading condition, those in the inserted condition spent more time reading the text initially, were more efficient at searching for information in the text, and produced more accurate elaborations, all of which may explain why answering inserted questions in an available text were more effective in terms of learning than answering post-reading questions. Limitations and educational implications of these results are also discussed.

Localizing, describing, interpreting: effects of different audio text structures on attributing meaning to digital pictures

1 week ago
Abstract

Based on previous research on multimedia learning and text comprehension, an eye-tracking study was conducted to examine the influence of audio text coherence on visual attention and memory in a multimedia learning situation with a focus on picture comprehension. Audio text coherence was manipulated by the type of LDI structure, that is, whether localization, description, and interpretation followed in immediate succession for each pictorial detail or whether localizations and description of details were separated from their interpretation. Results show that with a LDI integrated structure compared to a LDI separated structure the referred-to picture elements were fixated longer during interpretation parts, and linkages between descriptions and interpretations were better recalled and recognized. The effects on recall and recognition of linkages were fully mediated by fixation times. This pattern of results can be explained by an interplay between audio text coherence and dual coding processes. It points out the importance of local coherence and the provision of localization information in audio explanations as well as visual attention to allow for dual coding processes that can be used to better attribute meaning to picture details. Practical implications for the design of educational videos, audio texts on websites, and audio guides are discussed.

Investigating factors affecting student academic achievement in mathematics and science: cognitive style, self-regulated learning and working memory

1 week 6 days ago
Abstract

Studies indicate that learners’ cognitive style (CS), self-regulated learning (SRL), and working memory (WM) are associated with their academic performance. These studies describe the relationship of academic achievement with SRL, CS, or WM individually or pairwise relationships between SRL, CS, and WM rather than the overall relationship between academic achievement and each factor. In this study, a structural equation modelling (SEM) analysis was conducted to explore the overall theoretical relationship. We focused on academic achievements in mathematics and science (AAMS). A total of 191 sixth-grade students (male: 111, female: 80; mean age: 11.08 years, SD = 0.282) from two public elementary schools in Taiwan was selected as valid samples for this study. The findings indicated that CS, WM, and SRL individually had significant influences on AAMS, among which SRL had the largest effect, followed by WM and CS. Furthermore, we discovered that CS was significantly correlated with WM. The results of the analysis of the mediation effect demonstrated that CS both directly affected AAMS and indirectly affected AAMS through SRL. The implication of the findings and recommendations are also discussed.

Outside the standard test: The development of a model-based assessment and corresponding rubric

2 weeks 3 days ago
Abstract

Models and modeling are central to both scientific literacy and practices as demonstrated by the Next Generation Science Standards. Through a design-based research framework, we developed a model-based assessment (MBA) and associated rubric as tools for teachers to understand and support students in their conceptualization of the flow of energy and matter within ecosystems. The MBA was piloted with four middle school students (n = 4) and implemented in two sixth grade student cohorts (n = 89 & n = 98). The MBA and rubrics went through several design iterations in order to best capture student understanding of complex systems. The design of the MBA allows students to express conceptual understanding while also capturing the transformation of their understanding as they are exposed to new information and experiences within the curricular content.

Refined use of the eye-mind hypothesis for scientific argumentation using multiple representations

2 weeks 3 days ago
Abstract

Our objective in this study was to investigate how the eye-movement behavior and concurrent verbal protocols of students with high-/low-prior-knowledge were reflected in the use of multiple representations for scientific argumentation. We also examined the degree of consistency between eye-fixation data and verbalization to ascertain how and when the eye-mind hypothesis (EMH) applies in this subdomain of scientific argumentation. Our results focused on fixation duration and recorded arguments from 96 college students. The high-prior-knowledge group did not present static patterns in the inspection of multiple representations, which indicates that they tended to select representations according to the contingent demands of the current task, indicating that for them, there was no “most appropriate representation”. The high-prior-knowledge group also submitted a greater number of representations and more frequently mentioned multiple representations in their verbal protocols. Finally, the students demonstrated notable discrepancies between eye-movement data and verbal protocols related to representations as well as inconsistencies with previous findings. Thus, the fact that the EMH does not always hold could perhaps be attributed to the scope of interpretation in argumentation tasks and the complexity of information related to some representations, both of which could hinder the instantaneous formation of a gist. Our findings may contribute to reducing the ambiguity and uncertainty involved in the analysis of eye-fixation data when multiple representations are employed for scientific argumentation.

The collaborative discourse characteristics of high school students during a web-based module for a socioscientific issue

2 weeks 3 days ago
Abstract

In order to cultivate students to be able to participate in public affairs and make decisions about socioscientific issues (SSI), a web-based module was designed for students to collaboratively engage in the decision-making (DM) process. This study attempted to identify students’ discourse characteristics that might lead to formulating an evidence-based decision on SSI. Twenty-nine Grade 10 students were randomly divided into eight groups of three or four. The transcribed data of one case from each performance level were compared to investigate the interplay between groups’ DM performances and discourse characteristics. The results showed that the group that gained a high score on the DM group worksheet engaged in the metacognitive discussion for planning procedures of the module tools and in the conceptual exchanges to accomplish the tasks. The members of this group could initiate and extend ideas, provide prompts, and confirm or reject each other’s ideas, resulting in sustained interactive dialogs that allowed them to learn from one another. This indicated that students need to be encouraged to clarify the task goals, plan procedures, monitor their performance, and exchange their ideas actively. The implications of how collaborative discourse promote students’ SSI DM performance, and the better design and enactment of SSI modules are discussed.

Enhancing computational thinking skills of students with disabilities

2 weeks 3 days ago
Abstract

Computational thinking (CT) and computer science (CS) are becoming more widely adopted in K-12 education. However, there is a lack of focus on CT and CS access for children with disabilities. This study investigates the effect of the robot development process at the secondary school level on the algorithmic thinking and mental rotation skills of students with learning disabilities (LD). The study was conducted with the single-subject model and as an A-B-A design. In the study, the CT skill development of four students with LD (1 female, 3 male) was monitored throughout 13 weeks with the pre-treatment sessions running from weeks 1–4, treatment sessions running from weeks 5–9, and post-treatment sessions running from weeks 10–13. During the treatment sessions, robot design and programming implementations were performed. During these 13 sessions, the observer scored participants’ both algorithmic problem-solving and mental rotation skills. These skills are also required to use some other cognitive sub-skills (i.e., selective attention, processing speed) which were defined by ten special education experts at the beginning of the study. All these skills were evaluated according to how well the students performed the following four criteria: (1) To start to perform the instructions quickly (processing speed), (2) to focus on the task by filtering out distractions (selective attention), (3) to fulfill the task without having to have the instructions repeated, (4) to perform algorithmic problem-solving/mental rotation tasks without any help. Considering the results on the participants’ algorithmic problem-solving skills, a significant improvement was obtained in their skills after the treatment process. The improvement obtained in the participants’ mental rotation skills is another important result of the study. Considering the study results from a holistic perspective, it can be concluded that the robot development implementation, as educational technology, can be used to support the cognitive development of students with learning disabilities.

Using heuristic worked examples to promote solving of reality-based tasks in mathematics in lower secondary school

2 weeks 3 days ago
Abstract

This study examined whether learning with heuristic worked examples can improve students’ competency in solving reality-based tasks in mathematics (mathematical modeling competency). We randomly assigned 134 students in Grade 5 and 180 students in Grade 7 to one of three conditions: control condition (students worked on reality-based tasks), worked example condition (students studied worked examples representing a realistic process of problem-solving by fictitious students negotiating solutions to the tasks), and prompted worked example condition (students additionally received self-explanation prompts). In all three conditions, the students worked on the tasks individually and independently for 45 min. Dependent measures were mathematical modeling competency (number of adequate solution steps and strategies) and modeling-specific strategy knowledge. Results showed that although strategy knowledge could be improved through the intervention for fifth and seventh graders, modeling competency was improved only for seventh graders. The prompting of self-explanations had no additional effect for either fifth or seventh graders.

Concept map as a tool to assess and enhance students' system thinking skills

2 weeks 3 days ago
Abstract

Concept map (CM) is introduced as a useful tool for studying students’ system thinking (ST). However, it is more known to represent students’ knowledge of system components and organization and less recognized as a tool to examine and enhance students’ understanding about the underlying causal mechanisms in complex systems. In this study, through a mixed method approach, we investigated the potential of CM in demonstrating undergraduate students’ (n = 173) ST. We also conducted a comparative analysis to examine the effects of different scaffolding on developing students’ ST skills. Through a theoretical framework of causal patterns, we present a new perspective on what CM reveals about students’ ST and what are its limitations in showing system complexities. The results indicated that CM can provide a platform for students to practice causal mechanisms such as domino, mutual, relational, and cyclic causalities, and accordingly, work as a tool for teachers to examine students’ knowledge of such mechanisms. The results also showed that students improved in demonstrating ST by CM when they were scaffolded for showing causal mechanisms and building CM. Eventually, this study concludes that the CM is a highly relevant tool to increase and examine students’ ST skills. To this end, we found it is important to explicitly teach students about causal patterns and guide them to construct CM with an emphasis on showing the interconnection among concepts.

A framework for supporting systems thinking and computational thinking through constructing models

3 weeks 4 days ago
Abstract

We face complex global issues such as climate change that challenge our ability as humans to manage them. Models have been used as a pivotal science and engineering tool to investigate, represent, explain, and predict phenomena or solve problems that involve multi-faceted systems across many fields. To fully explain complex phenomena or solve problems using models requires both systems thinking (ST) and computational thinking (CT). This study proposes a theoretical framework that uses modeling as a way to integrate ST and CT. We developed a framework to guide the complex process of developing curriculum, learning tools, support strategies, and assessments for engaging learners in ST and CT in the context of modeling. The framework includes essential aspects of ST and CT based on selected literature, and illustrates how each modeling practice draws upon aspects of both ST and CT to support explaining phenomena and solving problems. We use computational models to show how these ST and CT aspects are manifested in modeling.

Embedding self-explanation prompts to support learning via instructional video

1 month ago
Abstract

Instructional videos have been widely used in online learning environments. Effective video learning requires self-regulation by learners, which can be facilitated by deliberate instructional design, such as through prompting. Grounded in the interactive, constructive, active, and passive (ICAP) framework, this study compared the effects of explanation prompts and explored how they affected the retention and transfer of learning. In an online experiment, 103 participants were randomly assigned to focused self-explanation, scaffolded self-explanation, and instructional explanation prompting conditions. The results indicated better retention performance from the scaffolded prompt than from the focused prompt. No differences were found in transfer performance across various forms of prompts. Regression analysis suggested that prior knowledge and cognitive load may have interacted with the effect of self-explanation prompts. Prior knowledge positively predicted transfer performance, and cognitive load negatively predicted transfer performance when focused or scaffolded prompts were implemented. Potential explanations concerning how self-explanation prompts affect learning were discussed.

Futurising science education: students’ experiences from a course on futures thinking and quantum computing

2 months 2 weeks ago
Abstract

To promote students’ value-based agency, responsible science and sustainability, science education must address how students think about their personal and collective futures. However, research has shown that young people find it difficult to fully relate to the future and its possibilities, and few studies have focused on the potential of science education to foster futures thinking and agency. We report on a project that further explored this potential by developing future-oriented science courses drawing on the field of futures studies. Phenomenographic analysis was used on interview data to see what changes upper-secondary school students saw in their futures perceptions and agentic orientations after attending a course which adapted futures thinking skills in the context of quantum computing and technological approaches to global problems. The results show students perceiving the future and technological development as more positive but also more unpredictable, seeing their possibilities for agency as clearer and more promising (especially by identifying with their peers or aspired career paths), and feeling a deeper connection to the otherwise vague idea of futures. Students also felt they had learned to question deterministic thinking and to think more creatively about their own lives as well as technological and non-technological solutions to global problems. Both quantum physics and futures thinking opened new perspectives on uncertainty and probabilistic thinking. Our results provide further validation for a future-oriented approach to science education, and highlight essential synergies between futures thinking skills, agency, and authentic socio-scientific issues in developing science education for the current age.

Figuring out what works: learning and engaging with ideas about evolution within integrated informal learning environments

2 months 2 weeks ago
Abstract

Informal learning environments can be a fun and effective means of introducing visitors to a variety of topics in evolution. Our study examined 120 sixth-grade students’ conceptualisation of evolutionary ideas following three evolution-themed “Science Days” at ‘Nature Campus’—an informal learning environment in Central Israel comprised of a natural history museum, zoological and botanical gardens. The students visited Nature Campus in groups of twenty. After each science day, the students worked in teams of 4–5 to make a poster, based on five pictures representing topics from the learning environment. This poster-making process served as a knowledge integration activity, aimed at assisting students in organizing all the knowledge from each science day, and integrating it with knowledge from the previous science days. Observations of students’ discussions while making their posters and video recordings of the activities throughout the science days were used as a basis for conclusions regarding which events in the program were recalled as meaningful by the students. The ideas and concepts that arose during the students’ poster making process demonstrated knowledge drawn from multiple activities in which they had engaged on Nature Campus, reflecting an understanding of evolution-related concepts from the fields of paleontology and ecology. Our findings showed that concepts and ideas that were taught via hands-on, interactive, inquiry-based learning in an authentic environment were later featured most prominently in the students’ poster-making discussions.

How many words are enough? Investigating the effect of different configurations of a software scaffold for formulating scientific hypotheses in inquiry-oriented contexts

2 months 2 weeks ago
Abstract

We extended research on scaffolds for formulating scientific hypotheses, namely the Hypothesis Scratchpad (HS), in the domain of relative density. The sample comprised of secondary school students who used three different configurations of the HS: Fully structured, containing all words needed to formulate a hypothesis in the domain of the study; partially structured, containing some words; unstructured, containing no words. We used a design with two different measures of student ability to formulate hypotheses (targeted skill): A global, domain-independent measure, and a domain-specific measure. Students used the HS in an intervention context, and then, in a novel context, addressing a transfer task. The fully and partially structured versions of the HS improved the global measure of the targeted skill, while the unstructured version, and to a lesser extent, the partially structured version, favored student performance as assessed by the domain-specific measure. The partially structured solution revealed strengths for both measures of the targeted skill (global and domain-specific), which may be attributed to its resemblance to completion problems (partially worked examples). The unstructured version of the HS seems to have promoted schema construction for students who revealed an improvement of advanced cognitive processes (thinking critically and creatively). We suggest that a comprehensive assessment of scaffolding student work when formulating hypotheses should incorporate both global and domain-specific measures and it should also involve transfer tasks.

How preparation-for-learning with a worked versus an open inventing problem affect subsequent learning processes in pre-service teachers

2 months 2 weeks ago
Abstract

A worked-out or an open inventing problem with contrasting cases can prepare learners for learning from subsequent instruction differently regarding motivation and cognition. In addition, such activities potentially initiate different learning processes during the subsequent (“future”) learning phase. In this experiment (N = 45 pre-service teachers), we aimed to replicate effects of earlier studies on learning outcomes and, on this basis, to analyze respective learning processes during the future-learning phase via think-aloud protocols. The inventing group invented criteria to assess learning strategies in learning journals while the worked-example group studied the same problem in a solved version. Afterwards, the pre-service teachers thought aloud during learning in a computer-based learning environment. We did not find substantial motivational differences (interest, self-efficacy), but the worked-example group clearly outperformed their counterparts in transfer (BF+0 > 313). We found moderate evidence for the hypothesis that their learning processes during the subsequent learning phase was deepened: the example group showed more elaborative processes, more spontaneous application of the canonical, but also of sub-optimal solutions than the inventing group (BFs around 4), and it tended to focus more on the most relevant learning contents. Explorative analyses suggest that applying canonical solutions to examples is one of the processes explaining why working through the solution leads to higher transfer. In conclusion, a worked-out inventing problem seems to prepare future learning more effectively than an open inventing activity by deepening and focusing subsequent learning processes.

Learning to solve ill-defined statistics problems: does self-explanation quality mediate the worked example effect?

2 months 2 weeks ago
Abstract

Extensive research has established that successful learning from an example is conditional on an important learning activity: self-explanation. Moreover, a model for learning from examples suggests that self-explanation quality mediates effects of examples on learning outcomes (Atkinson et al. in Rev Educ Res 70:181–214, 2000). We investigated self-explanation quality as mediator in a worked examples—problem-solving paradigm. We developed a coding scheme to assess self-explanation quality in the context of ill-defined statistics problems and analyzed self-explanation data of a study by Schwaighofer et al. (J Educ Psychol 108: 982–1000, 2016). Schwaighofer et al. (J Educ Psychol 108: 982–1000, 2016) investigated whether the worked example effect depends on prior knowledge, working memory capacity, shifting ability, and fluid intelligence. In our study, we included these variables to jointly explore mediating and moderating factors when individuals learn with worked examples versus through problem-solving. Seventy-four university students (mean age = 23.83, SD = 5.78) completed an open item pretest, self-explained while either studying worked examples or solving problems, and then completed a post-test. We used conditional process analysis to test whether the effect of worked examples on learning gains is mediated by self-explanation quality and whether any effect in the mediation model depends on the suggested moderators. We reproduced the interaction effects reported by Schwaighofer et al. (J Educ Psychol 108: 982–1000, 2016) but did not detect a mediation effect. This might indicate that worked examples are directly effective because they convey a solution strategy, which might be particularly important when learning to solve problems that have no algorithmic solution procedure.

Detecting threshold concepts through Bayesian knowledge tracing: examining research skill development in biological sciences at the doctoral level

2 months 2 weeks ago
Abstract

Threshold concepts are transformative elements of domain knowledge that enable those who attain them to engage domain tasks in a more sophisticated way. Existing research tends to focus on the identification of threshold concepts within undergraduate curricula as challenging concepts that prevent attainment of subsequent content until mastered. Recently, threshold concepts have likewise become a research focus at the level of doctoral studies. However, such research faces several limitations. First, the generalizability of findings in past research has been limited due to the relatively small numbers of participants in available studies. Second, it is not clear which specific skills are contingent upon mastery of identified threshold concepts, making it difficult to identify appropriate times for possible intervention. Third, threshold concepts observed across disciplines may or may not mask important nuances that apply within specific disciplinary contexts. The current study therefore employs a novel Bayesian knowledge tracing (BKT) approach to identify possible threshold concepts using a large data set from the biological sciences. Using rubric-scored samples of doctoral students’ sole-authored scholarly writing, we apply BKT as a strategy to identify potential threshold concepts by examining the ability of performance scores for specific research skills to predict score gains on other research skills. Findings demonstrate the effectiveness of this strategy, as well as convergence between results of the current study and more conventional, qualitative results identifying threshold concepts at the doctoral level.

How do higher education students regulate their learning with video modeling examples, worked examples, and practice problems?

2 months 3 weeks ago
Abstract

Presenting novices with examples and problems is an effective and efficient way to acquire new problem-solving skills. Nowadays, examples and problems are increasingly presented in computer-based learning environments, in which learners often have to self-regulate their learning (i.e., choose what type of task to work on and when). Yet, it is questionable how novices self-regulate their learning from examples and problems, and to what extent their choices match with effective principles from instructional design research. In this study, 147 higher education students had to learn how to solve problems on the trapezoidal rule. During self-regulated learning, they were free to select six tasks from a database of 45 tasks that varied in task format (video examples, worked examples, practice problems), complexity level (level 1, 2, 3), and cover story. Almost all students started with (video) example study at the lowest complexity level. The number of examples selected gradually decreased and task complexity gradually increased during the learning phase. However, examples and lowest level tasks remained relatively popular throughout the entire learning phase. There was no relation between students' total score on how well their behavior matched with the instructional design principles and learning outcomes, mental effort, and motivational variables.