Instructional Science

Effects of short- and long-term prompting in learning journals on strategy use, self-efficacy, and learning outcomes

2 weeks 6 days hence
Abstract

In learning journals, prompts were shown to increase self-regulated learning processes effectively. As studies on effects of long-term prompting are sparse, this study investigates the effects of prompting cognitive and metacognitive self-regulation strategies short-term and long-term in learning journals on learners’ strategy use, self-efficacy, and learning outcome. Therefore, 74 university students kept a weekly learning journal as follow-up course work over a period of eight weeks. All students’ learning journals included prompts for a short-term period, half of the students were prompted long-term. While self-efficacy was assessed via self-reports, strategy use was measured with self-reports and qualitative data from the learning journals. Learning outcomes were assessed via course exams. Short-term prompting increased self-reported cognitive and metacognitive strategy use, and the quantity of cognitive strategy use. Yet, it did not affect self-efficacy, which predicted the learning outcome. Irrespective whether prompting continued or not, self-reported cognitive and metacognitive strategy use, and self-efficacy decreased. Qualitative data indicate that the quantity of learners’ cognitive strategy use kept stable irrespective of the condition. The results indicate that short-term prompting activates cognitive and metacognitive strategy use. Long-term prompting in learning journals had no effect on strategy use, self-efficacy, and performance. Future research should investigate possible enhancers of long-term prompting like feedback, adaptive prompts or additional support.

Signaling cues and focused prompts for professional vision support: The interplay of instructional design and situational interest in preservice teachers’ video analysis

2 weeks 6 days hence
Abstract

In teacher education, video representations of practice offer a motivating means for applying conceptual teaching knowledge toward real-world settings. With video analysis, preservice teachers can begin cultivating professional vision skills through noticing and reasoning about presented core teaching practices. However, with novices’ limited prior knowledge and experience, processing transient information from video can be challenging. Multimedia learning research suggests instructional design techniques for support, such as signaling keyword cues during video viewing, or presenting focused self-explanation prompts which target theoretical knowledge application during video analysis. This study investigates the professional vision skills of noticing and reasoning (operationalized as descriptions and interpretations of relevant noticed events) from 130 preservice teachers participating in a video-analysis training on the core practice of small-group instruction. By means of experimental comparisons, we examine the effects of signaling cues and focused self-explanation prompts on professional vision performance. Further, we explore the impact of these techniques, considering preservice teachers’ situational interest. Overall, results demonstrated that preservice teachers’ professional vision skills improved from pretest to posttest, but the instructional design techniques did not generally offer additional support. However, moderation analysis indicated that training with cues fostered professional vision skills for preservice teachers with low situational interest. This suggests that for uninterested novices, signaling cues may compensate for the generative processing boost typically associated with situational interest. Research and practice implications involve the consideration of situational interest as a powerful component of instructional design, and that keyword cueing can offer an alternative when interest is difficult to elicit.

Research on the correlation between teacher classroom questioning types and student thinking development from the perspective of discourse analysis

2 weeks 6 days hence
Abstract

Discourse analysis, as a mainstream research method in classroom teaching, has gained widespread attention in education. Educators believe that children's thinking development requires support from interactive discourse. In this study, four primary school mathematics classes were segmented based on the form, frequency, content, and purpose of teacher-student interactions. A total of 73 dialogue segments were selected for coding, resulting in 338 codes. The coding process was based on the turn of talk and assigned corresponding coding numbers to the content of teacher-student discourse in the fragments according to the Bloom-Turney teaching questioning code list and the Hierarchical Framework of Student Thinking Level based on Biggs-Collis Structure of the observed learning outcome. The results show that Knowledge level question (Q1), Understanding level question (Q2), Application level question (Q3), Synthesis level question (Q5), and Evaluation level question (Q6) are related to students' low-level thinking. The questions of Analysis level (Q4), Synthesis level (Q5), and Evaluation level (Q6) are related to students' high-level thinking. We found that there are variety of interactive structures between teachers and students in the question and answer session, among which three interaction structures show significant performance, namely Q2 → M (Multiple-point structural level) → Q4 → C (Correlational structural level), Q3 → M → Q4 → C, Q3 → M → Q6 → A (Abstract-extension level), these structures can show how teachers timely adjust the types of questions according to students' answers to improve students' thinking level.

Transfer of responsibility in novice and experienced Iranian EFL teachers’ scaffolding: interactional characteristics

2 weeks 6 days hence
Abstract

Transfer of responsibility for learning from the teacher to the learner has been considered the final aim of successful scaffolding. Despite this importance, few studies have been conducted in this area. The present conversation analytic study examined the scaffolding interactions of a sample of Iranian English language teachers to identify how responsibility for learning was transferred in scaffolding interactions. The teachers were divided into two groups of novice and experienced based on the criteria proposed in the extant literature. The results showed that the novice and experienced language teachers enacted transfer differently. The novice teachers used more high-support moves, like models and questions with scarce use of low-support moves, thereby mostly curbing the transfer process. However, the experienced teachers used a wider range of scaffolding strategies especially low-support moves to encourage learners to use their learning potentials. The novice teachers mismanaged repair-initiations while experienced teachers mainly ended repair-initiations in self-repairs. The study suggests that the teachers’ experience level can significantly impact their scaffolding interactions with students. Further, it highlights the significance of providing ongoing professional development and training opportunities for language teachers to improve their ability to provide effective scaffolding. Overall, the study highlights the need for continued research in this domain.

Fostering university students’ online reading: effects of teacher-led strategy training embedded in a digital literacy course

2 weeks 6 days hence
Abstract

Online reading for academic purposes is a complex and challenging activity that involves analysing task requirements, assessing information needs, accessing relevant contents, and evaluating the relevance and reliability of information given the task at hand. The present study implemented and tested an analytical approach to strategy training that combined a detailed, step-by-step presentation of each strategy with the integration of various strategies across modules and practice tasks. One hundred sixty-seven university students were assigned to either a treatment or a control condition. The training program was implemented as part of a digital literacy course. Instructors received background information and instructional materials prior to the beginning of the term. The intervention improved students’ performance on a set of search and evaluation tasks representative of the target skills, although to varying extent. The impact was higher for evaluation than for search skills, in terms of accuracy and quality of students’ justifications. The data provides initial evidence that an analytical approach may foster university students’ use of advanced reading strategies in the context of online reading. Implications for instruction and future research are discussed.

Infusing teacher-preparation curriculum with case-based instruction focused on culturally responsive, sustaining pedagogy: comparing instructor-facilitated and instructor-supported approaches

2 weeks 6 days hence
Abstract

To maximize our teacher candidates’ learning about culturally and linguistically diverse students, we developed and implemented Case-Based Instructional (CBI) Modules (Language, Identity, Family, Assumptions) in two teacher preparation courses at a US university. We examined the Modules’ impacts on teacher candidates’ learning, self-efficacy, attitudes, and transfer of learning to novel contexts. Examining the Modules’ effectiveness within and across two delivery modes indicated that both instructor-facilitated and instructor-supported approaches to CBI elicit similar positive attitudes and are effective in enhancing teacher candidates’ learning, but not transfer. When teacher candidates’ analyses of cases were not facilitated by instructor, however, there were some missed opportunities for learning.

Erroneous examples in refutational text to address the phenomenal sign misconception in equations and inequalities

4 days 18 hours ago
Abstract

The ability to solve equations and inequalities is necessary for success in algebra. However, reasoning biases and misconceptions may create barriers for students to build knowledge of algebraic symbols and their values. This study investigated whether students’ errors when solving equations and inequalities could be attributed to their tendency to misinterpret the phenomenal sign of an expression (e.g., − 2x  interpreted as representing negative numbers only). Additionally, the study examined whether an intervention using erroneous reasoning examples in refutational texts would be more effective than correct examples in helping students address the specific misconception. The study involved 119 9th-grade Greek students who underwent Pre-, Post-, and Retention tests. The Experimental Group (N = 44) saw erroneous examples of reasoning with solving inequalities in refutational text, while the Control Group (N = 65) saw correct examples in non-refutational text. The results showed that students’ misinterpretation of the phenomenal sign in algebraic expressions may influence their mistakes when solving certain kinds of equations and inequalities. Both erroneous and correct examples were effective in helping students address some of their misconceptions, although the gains were not sustained in the long term.

Making crosscutting concepts explicit for senior high school students through concept-based instructions and improving their understanding thereof

1 week 5 days ago
Abstract

Clearly defining and clarifying crosscutting concepts (CCCs) helps students to apply them as thinking tools or lenses to understand disciplinary core ideas and science and engineering practices. This study identified three characteristics of the sub-concepts of CCCs: conceptual, superordinate, and common across disciplines, and explored a way based on the 5E instructional model that supports making CCCs explicit. A targeted and coherent unit of scale (one of the CCCs) served as an example to introduce the design and implementation of the instructions to externalise CCCs to students. After defining the four sub-concepts of scale based on scientific research literature, supportive teaching activities were selected and organised according to the 5E instructional model. There were 65 students (35 boys and 30 girls; 59 students in Grade One and six in Grade Two), who participated for two rounds of a CCCs elective course that we offered. They were all East Asian, aged 15–17, and came from 22 different classes. Most of them had chosen science as the compulsory subject to take the future university entrance exam. Through quantitative and qualitative analyses of students’ responses to the paper test, multiple group interviews, and group work, we determined their spontaneous uncertainty, pre-concepts, and prior foundational experiences before entering the unit; identified their process of activating, constructing, and clarifying thinking during the unit; and found their better understanding of the three characteristics of scale after the unit. The 5E-based instruction facilitated active learning, conceptual change, and transfer by actively constructing understanding, formalising knowledge, and interrelating disciplines.

Students’ voices—the dynamic interactions between learning preferences, gender, learning disabilities, and achievements in science studies

1 month 1 week ago
Abstract

Students’ individual characteristics influence the effectiveness of instruction and learning and, therefore, the depth of learning. This study brings forth the voices of middle school students regarding their science learning preferences through four modalities: visual, auditory, sensorimotor, and agency support. We examined the relationship between the students’ science learning preferences and three of their personal characteristics (gender, having or not having a learning disability, and level of scientific knowledge and skills). The study encompassed 305 students (166 girls) and applied a quantitative methodology employing two questionnaires: Scientific Knowledge and Skills and Learning Preferences. Analysis of variance and multiple regressions revealed that the participants favored all four learning modalities, with a significant preference for learning via visual and sensorimotor means. Girls significantly preferred learning preferences via visuals and agency support. A significant correlation was found between the level of preference for learning science via auditory means and the students’ level of scientific knowledge and skills. Hierarchical regression analysis showed a significant positive contribution of gender and preference for learning science via auditory means but no contribution of having a learning disability to the students’ level of scientific knowledge and skills. The study results show the importance of implementing multi-faceted instructional strategies to address students’ diversity and learning preferences. Our findings underscore the need for educators and policymakers to be attentive to the students’ voices when striving to narrow gaps, achieve equality among students, and elevate students’ knowledge and skills in science studies.

Spaced recall reduces forgetting of fundamental mathematical concepts in a post high school precalculus course

1 month 1 week ago
Abstract

The retention of fundamental mathematical skills is imperative to provide a foundation on which new skills are developed. Educators often lament about student retention. Cognitive scientists and educators have explored teaching methods that produce learning which endures over time. We wanted to know if using spaced recall quizzes would prevent our students from forgetting fundamental mathematical concepts at a post high school preparatory school where students attend for 1 year preparing to enter the United States Military Academy (USMA). This approach was implemented in a Precalculus course to determine if it would improve students’ long-term retention. Our goal was to identify an effective classroom strategy that led to student recall of fundamental mathematical concepts through the end of the academic year. The concepts that were considered for long-term retention were 12 concepts identified by USMA’s mathematics department as being fundamental for entering students. These concepts are taught during quarter one of the Precalculus with Introduction to Calculus course at the United States Military Academy Preparatory School. It is expected that students will remember the concepts when they take the post-test 6 months later. Our research shows that spaced recall in the form of quizzing had a statistically significant impact on reducing the forgetting of the fundamental concepts while not adversely effecting performance on current instructional concepts. Additionally, these results persisted across multiple sections of the course taught at different times of the day by six instructors with varying teaching styles and years of teaching experience.

Designing to support equity-as-transformation perspectives for multilingual science learners

1 month 1 week ago
Abstract

In this paper, we examine how researchers and teachers in a multi-year professional development program shifted their conceptualizations of equity. Following (Grapin et al (2023) Sci Educ 107:999–1032), we ground our analysis in two conceptualizations of equity that exist across fields: equity-as-access (learners should have access to disciplinary knowledge, practices, and career paths) and equity-as-transformation (learners should transform what it means to learn and participate in disciplines). In this study, we describe a professional development (PD) design initially intended to support equitable science teaching and learning by focusing on representations. This initial framing did not distinguish between conceptions of equity-as-access versus equity-as-transformation. As a result, the PD did not provide facilitators or teachers with resources for ideological sensemaking towards equity-as-transformation. Catalyzed by teachers’ request for PD focused on multilingual learners (MLs), we noticed aspects of our design that offered only images of equity-as-access. In response, we designed activities for teachers that offered space and resources for considering equity-as-transformation. As a case study (Yin (2014) Case study research: design and methods, SAGE) using interaction analysis (Jordan and Henderson (1995) J Learn Sci 4:39–103) of PD videos, we describe how we PD activities and facilitation strategies to integrate transformative conceptualizations of equity. These findings have implications for both research and practice. In terms of research, they demonstrate the importance of using multiple lenses to consider equity in science classrooms. In terms of practice, they underscore the importance of providing teachers with opportunities to explicitly connect new perspectives of equity with day-to-day experiences of classroom teaching.

Investigating the role of an inquiry-based science lab on students’ scientific literacy

1 month 1 week ago
Abstract

Promotion of students’ scientific literacy has long been and continues to be a central goal for reform efforts in science education. Although there is a great number of research conducted to evaluate student’s scientific literacy, less is known about how we can improve students’ scientific literacy through variety of scientific practices. In this study we aimed to refer to this shortcoming in the literature by examining the effect of argument driven inquiry (ADI) instructional model to promote 8th grade students’ scientific literacy. A mixed method quasi experimental design was used in this study. Sixty-seven eighth grade students from the same public school attended the study. Two intact classes were randomly assigned either in structured inquiry (SI) or ADI groups. The data sources included a Scientific Literacy Assessment (SLA) and semi-structured interviews. The results indicated that students experiencing ADI instruction scored higher on the SLA-D test and personal epistemology dimension of SLA-MB test than students experiencing SI instruction. The results propose that engaging students in meaningful scientific practices may support their scientific literacy.

Designing for learning across disciplines: leveraging graphs to improve knowledge integration in science

1 month 1 week ago
Abstract

Advances in graphing technologies and learning sciences pedagogy have the potential to equitably support students when exploring complex systems depicting dynamic relationships across multiple disciplinary topics in Science, Technology, Engineering, and Mathematics (STEM). We report on the cumulative impact of science units designed in a Research Practice Partnership (RPP) that leveraged Knowledge Integration (KI) pedagogy to support middle school students to generalize insights to new graph representations and science topics. Teachers across 11 schools incorporated the graph-science units into their curriculum plans. We analyzed ~ 8000 responses to validated and reliable graph-science KI assessment items administered before the first year and after one, two, or three years of instruction aligned with KI pedagogy. With random coefficient, multi-level, mixed-effect regression modeling, we analyzed performance after one-, two-, and three-years of graph-science KI instruction. We also analyzed the growth trajectories of subgroups, i.e., multilingual learners. Data suggest two years of graph-science KI instruction is needed to make significant impacts on student learning and ameliorated the disparity between students with different native language fluencies. These results illustrate the value of technology-enhanced, pedagogically aligned K-12 science instruction that is designed to support connecting diverse graph data and science knowledge comprehensively and cumulatively.

English learners learn from worked example comparison in algebra

1 month 1 week ago
Abstract

Comparison is an important mechanism for learning in general, and comparing two worked examples has garnered support over the last 15 years as an effective tool for learning algebra in mainstream classrooms. This study was aimed at improving our understanding of how Modified for Language Support-Worked Example Pairs (MLS-WEPs) contribute to effective mathematics learning in an ESOL (English to Speakers of Other Languages) context. It investigated a novel instructional approach to help English Learners (ELs) develop better understanding in mathematical reasoning, problem solving, and literacy skills (listening, reading, writing, and speaking). Findings suggest that MLS-WEPs not only enhanced ELs’ ability to solve algebra problems, but it also improved their written explanation skills and enabled them to transfer such skills to different mathematical concepts. Moreover, when controlling for ELs’ prior knowledge, the effectiveness of the MLS-WEPs intervention for performing and explaining calculations did not vary by their English proficiency.

The roles that students’ ethnicity and achievement levels play in teachers’ choice of learning materials in online teaching: evidence from two experimental studies

2 months 1 week ago
Abstract

Research has shown that, in general, students are treated differently on the basis of their achievement levels and ethnicity. Such differential treatment might also result in the administration of different learning materials, and so far, not much is known about how teachers choose these materials for different students. In two vignette studies, we investigated which student factors influence teachers’ choice of materials. In Study 1, preservice teachers were asked to choose between an easy or difficult instructional video with the same content in response to vignettes that differed by students’ ethnic minority or majority background. In Study 2, preservice teachers could choose between text or video materials with the same content. The student descriptions varied systematically in achievement (high vs. low) and ethnic background (minority vs. majority). The results of Study 1 showed that ethnic minority background students were significantly more often given the easy video than ethnic majority background students. In Study 2, the results showed that student achievement was the crucial factor. Low-achieving students were given the video significantly more often, whereas high-achieving students were more often given the text. Both studies provide initial insights into how teachers’ material choice might be influenced by student characteristics.

Developmental relations between mathematics self-concept, interest, and achievement: A comparison of solo- and co-taught classes

2 months 2 weeks ago
Abstract

This study investigated the role of co-teaching in the development of students’ mathematics motivation and achievement. More specifically, we examined how sixth-grade students’ (N = 146) mathematics self-concept and individual interest changed over one school year, how these changes were related to each other and to mathematics achievement, and, most importantly, whether they differed between co-teaching and solo-teaching conditions. The co-teaching condition included 70 students in three classes with mathematics taught by pairs of teachers, while the solo-teaching condition included 76 students in four classes with mathematics taught by individual class teachers. The design included three repeated measures of mathematics self-concept and interest as well as pre- and post-measures of mathematics test performance and teacher-rated mathematics grades. A series of latent growth curve analyses showed both self-concept and individual interest to decline over time, and these changes to be strongly correlated: as self-concept decreased, so did interest, and vice versa. The changes in self-concept and interest were independent of prior achievement and did not predict later achievement either. Students in the co-taught group received better grades at the end of the year, but no differences in the development of self-concept and individual interest were found between the teaching conditions. That is, co-teaching contributed to improvement in mathematics achievement, but this was not mediated by changes in mathematics motivation.

Gaming the system mediates the relationship between gender and learning outcomes in a digital learning game

2 months 2 weeks ago
Abstract

Digital learning games have been increasingly adopted in classrooms to facilitate learning and to promote learning outcomes. Contrary to common beliefs, many digital learning games can be more effective for female students than male students in terms of learning and affective outcomes. However, the in-game learning mechanisms that explain these differences remain unclear. In the current study, we re-analyze three retrospective data sets drawn from three studies conducted in different years. These data sets, which involved 213, 197, and 287 students, were collected from a digital learning game that teaches late elementary and middle school students decimal concepts. We re-analyzed these data sets to understand how female and male students differ in the rates of gaming the system, a behavioral measure that reflects a form of disengagement while playing the game. Rates of gaming the system are compared between female and male students within each of the game’s two core instructional activities (i.e. problem-solving and self-explanation) as well as tested in a game vs. non-game condition. We found that female students game the system significantly less than male students in the self-explanation step in the game condition, in all three studies. This difference in the rates of gaming mediates the relationship between gender and learning outcomes, a pattern in which female students tend to learn more than male students, across all three studies. These results suggest that future design iterations of the game could focus on reducing gaming behaviors for male students, which might improve learning outcomes for female students as well. Understanding gender-based differences in game behaviors can inform future game design to promote better learning outcomes for all students.

Improving multiple document comprehension with a lesson about multi-causal explanations in science

3 months 1 week ago
Abstract

Relying on multiple documents to answer questions is becoming common for both academic and personal inquiry tasks. These tasks often require students to explain phenomena by taking various causal factors that are mentioned separately in different documents and integrating them into a coherent multi-causal explanation of some phenomena. However, inquiry questions may not make this requirement explicit and may instead simply ask students to explain why the phenomenon occurs. This paper explores an Activity Model Hypothesis that posits students lack knowledge that their explanation should be multi-causal and how to engage in the kind of thinking needed to construct such an explanation. This experiment, conducted on a sample of eigth grade students, manipulated whether students received a short 10-min lesson on the nature of scientific explanations and multi-causal reasoning. Students who received this causal chain lesson wrote essays that were more causally complex and integrated, and subsequently performed better on an inference verification test, than students who did not receive the lesson. These results point to relatively simple changes to instructions that can provide the support students need for successful multiple-document comprehension.